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SUMMARY

The effects of pulsatile amplitude on sinusoidal transitional turbulent flows through a rigid pipe in the
vicinity of a sharp-edged mechanical ring-type constriction have been studied numerically. Pulsatile flows
were studied for transitional turbulent flow with Reynolds number (Re) of the order of 104, Womersley
number (Nw) of the order of 50 with a corresponding Strouhal number (St) of the order of 0.04. The
pulsatile flow considered is a sinusoidal flow with dimensionless amplitudes varying from 0.0 to 1.0.
Transitional laminar and turbulent flow characteristics in an alternative manner within the pulsatile flow
fields were observed and studied numerically. The flow characteristics were studied through the pulsatile
contours of streamlines, vorticity, shear stress and isobars. It was observed that fluid accelerations tend
to suppress the development of flow disturbances. All the instantaneous maximum values of turbulent
kinetic energy, turbulent viscosity, turbulent shear stress are smaller during the acceleration phase when
compared with those during deceleration period. Various parametric equations within a pulsatile cycle
have also been formulated through numerical experimentations with different pulsatile amplitudes. In the
vicinity of constrictions, the empirical relationships were obtained for the instantaneous flow rate (Q), the
pressure gradient (dp/dz), the pressure loss (Ploss), the maximum velocity (Vmax), the maximum vorticity
(zmax), the maximum wall vorticity (zw,max), the maximum shear stress (tmax) and the maximum wall shear
stress (tw,max). Elliptic relation was observed between flow rate and pressure gradient. Quadratic relations
were observed between flow rate and the pressure loss, the maximum values of shear stress, wall shear
stress, turbulent kinematic energy and the turbulent viscosity. Linear relationships exist between the
instantaneous flow rate and the maximum values of vorticity, wall vorticity and velocity. The time-aver-
age axial pressure gradient and the time average pressure loss across the constriction were observed to
increase linearly with the pulsatile amplitude. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, pulsatile flows have attracted much attention due to their increasing relevance
in many engineering and biomedical applications. For example, unsteady flow through
constrictions is of interest to the designer of unsteady flow meters [1]. The relationship between
flow rate and pressure loss across various type of mechanical constrictions provides a mean of
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estimating the mean flow rate from the measured pressure loss. The characteristics of
unsteady/pulsatile turbulent flows observed can also be used for improvement of transporta-
tion of non-Newtonian fluid through miniature pulsatile pumps. The increase in flow rate of
non-Newtonian materials of the same pressure gradient is possible with pulsating flow when
compared with steady flow. Masry and Shobakys [2] reported that the energy saving can be as
high as 30% if an optimum frequency of pulsatile velocity is used. An experimental study of
pulsatile flow in pipes within the transition range was made by Einav and Sokolov [3]. The
principle of unsteady flow was also frequently applied to the heat transfer devices, since heat
transfer can be enhanced by the incipience of flow instability induced by undulating constric-
tions in the flow [4].

For biomedical applications with non-ring type constrictions in vascular pipes, research
investigations are numerous [5–13]. Study on the characteristics of unsteady flow in the
vicinity of ring type constrictions in vascular pipe are of interest to the designer of artificial
heart valves and miniature pulsatile blood flow meters [1,14]. The possibility that hemody-
namic factors may participate in the genesis and proliferation of atherosclerosis has also
fostered increased study of flow through various types of constrictions during the past decade
[15]. One of the recent research interest concerns the relationship between the vascular disease
and the effects of constrictions and the magnitude of wall shear stress. It is, therefore,
worthwhile from the fluid dynamics point of view to study and identify regions of very high
shear and normal stresses in the flow (haemolysis), regions of very low or very high shear stress
at walls (atheromatous lesions), and the extent of separated or reversed flow regions (thrombo-
sis) in vascular pipes with implanted mechanical constrictions.

In the study of intracardiac blood flow and large vascular stenosis, the pressure loss,
maximum flow velocity and shear stress and recirculation region are parameters of extreme
interest because of their relation with the atheroma caused by large pressure drop across the
constriction created through artificial implants, the corpuscle damage by large shear stress and
the thrombus phenomena resulting from the recirculation region [12,16–23]. In some related
studies, parameters of special interest are the pulsating frequency (St or Nw) and the pulsatile
amplitude (A) [1,4,14,17,20].

Most of the existing studies were for laminar flows through constrictions with ‘smooth’
sinusoidal or bell shape profiles. Few considered transitional turbulent flow over mechanical
constrictions with sharp edges. An investigation is thus carried out here to study the effect of
pulsating flow on the developing flow characteristics of an unsteady transitional turbulent flow
through a mechanical sharp edge ring type constriction (Figure 1(a)). As sinusoidal pulsatile
inflow is the most common type of unsteady flow approximated in most engineering applica-
tions, it is also used here as an inflow boundary condition. The pulsatile flow in rigid pipe with
a sharp edge ring-type constriction can also be used as a model for studying the application of
fluid device implants in intracardiac flow, unsteady flow meters, as well as unsteady flow
through heat exchangers.

With the sinusoidal inflow imposed as boundary condition for the pulsatile flow over a
mechanical sharp edge ring-type constriction, the present investigation focused on the study of
the variation of the pressure gradient along the axial direction, the pressure loss in flow passing
through the constriction, the maximum flow velocity, maximum vorticity and maximum shear
stress, the recirculation length, as well as the centreline velocity profiles in the developing flow.
The results of the ring-type constriction presented here is for a constriction opening of
d/D=0.5 and thickness of h/D=0.1. The mean turbulent flow Reynolds number is of the
order 104 and the flow Strouhal number (St) considered is of the order 0.04 with a
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corresponding Womersley number (Nw) of order 50. The pulsating amplitude (A) of the
sinusoidal inflow considered varies from 0.0 to 1.0.

2. GOVERNING EQUATIONS AND NUMERICAL PROCEDURES

Incompressible turbulent flow in pipes near a mechanical sharp-edged constriction (Figure
1(a)) is governed by the Reynolds-averaged Navier–Stokes equations. By using the eddy
viscosity concept and the k–o turbulence model closure, the dimensionless governing equations
of two-dimensional flow can be expressed in axisymmetric co-ordinates as follows:
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Figure 1. Flow in rigid pipe with a sharp-edged ring-type constriction.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)



T.S. LEE AND Z.D. SHI816
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Turbulence kinetic energy equation:
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Turbulence dissipation rate equation:
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The effective viscosity ne is defined as:

ne=nt+1/Re, (6)

where 1/Re represents the contribution of the fluid molecular viscosity, and nt is the
dimensionless turbulent eddy viscosity, defined by

nt=Cmk2/o. (7)

The variable G in source terms of the k–o equations is given as:
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The values of the five empirical constants in the k–o equations as given by Stevenson et al. [16]
and Patankar [24] are:

Cm=0.09, C1=1.44, C2=1.92, sk=1.0, so=1.3.

The parameter fc in the o-equation represents the streamline curvature correction for the
standard k–o model, and is defined in [25,26] as:

fc=1.0−CcRit, Cc=0.2, Rit=
k2

o2

u2+62
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where Rit is the turbulent Richardson number, Rc is the local streamline curvature, given by:
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In the numerical process, these equations are reformulated in a curvilinear co-ordinate
system with the axisymmetric physical components taken as the dependent variables. The
transformed equations were expressed in a general semi-strong conservation form similar to
that given by Lou and Yang [21] and Reggio et al. [27]. The resulting non-linear transformed
equations are then solved by an iterative process. All the physical variables (u, 6, p, k, o) are
updated as:

fn+1=fn+df, (11)

where n and (n+1) are the last and current iteration numbers, and f represents each of the
physical variables. Substituting Equation (11) into the governing equations, the equations are
then expressed in incremental form. The resulting equations are solved by the SIMPLE
algorithm of Patankar [24] on co-located non-staggered grid for ease of imposing the pressure
boundary conditions. All terms containing incremental variables are discretized by three-point
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difference schemes. The first-order hybrid up-wind difference schemes are used for convective
terms, the second-order central schemes for diffusive terms, the first-order forward schemes for
pressure terms and first-order backward schemes for continuity equation. The residuals (R) are
calculated by the second-order difference schemes, which are the second-order upwind scheme
for convective terms, the central schemes for diffusive terms, and the second-order forward or
backward schemes for pressure terms and continuity equations. Due to the variation of the
main flow direction in pulsatile flows, the discretization of pressure gradient terms and
continuity equations are adjusted according to the instantaneous main flow direction. A
modified Crank–Nicolson scheme with a weighting factor u is used to discretize the time-de-
pendent terms in the governing equations. In the present work, u=0.6 is adopted after a series
of numerical tests. The 6alues of time step increment Dt chosen follows closely the general CFL
criteria. At convergence, the residual vector R approaches zero and the convergent results
approach the second-order accuracy.

3. GEOMETRICAL CONFIGURATION AND BOUNDARY CONDITIONS

The geometrical parameters are defined in Figure 1(a). The constriction has opening ratio of
0.5 and thickness ratio of 0.1. The grid point in the r-direction is equally distributed. A
stretching function described in detail in [14] and, as shown in Figure 1(b), is used for the grid
points distribution in the z-direction. In the solution domain shown in Figure 1(a), the velocity
profiles at the upstream inlet boundary are described by

u(r, t)=
(n+1)(2n+1)

2n2 ū(t)
�

1−2
r
D
�1/n

, (12a)

where n is given a value of 6.0 in the present study. This power law, rather than a parabolic
profile, is used at every time step because the velocity profiles of pulsatile flow are generally
not parabolic. The average inlet velocity, ū(t), is specified accordingly to the sinusoidal pulsatile
flow :

ū(t)=1+A sin(2pt/T). (12b)

At each time step, along the solid wall, a no-slip velocity condition is used, i.e. u=0, 6=0.
Along the central line, axisymmetric conditions are applied for all variables, that (u/(r=0,
6=0, (p/(r=0, (k/(r=0, (o/(r=0. At the downstream exit section, the pressure is fixed to
zero. The flow is considered as fully developed, so all other variable’s first-order differential
along the z-direction are set to zero. The boundary conditions at the inlet section and k, o wall
boundary conditions are described as follows.

The k and o at the inlet section are given by following formula as [28]:
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−1/2lm

2 �(u
(r
�2

and o=Cm
1/2k
(u
(r

, (13)

where the mixing length, lm, is the smaller value determined by either the Nikuradse formula:
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or computed from the wall region formula:

lm=0.41y, (14b)
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where y is a normal distance from the wall. These formulations give zero values for k and o

at the center of the vascular pipe which is not realistic. To compensate for the possibility of
unrealistic centerline values, a minimum value of the turbulent intensity of 0.003ū(t) was
determined [28]. A long computing vascular pipe region upstream of the constriction is also
used in the present calculation to minimise this effect.

Along the solid wall, a wall function is used to obtain the k and o values at those grid
points adjacent to the solid wall. Dou [29] proposed an analytical function to connect the u*,
up and y+ for the whole flow region as follows:

up

u*
=2.5 ln(1=y+/5)+7.05

� y+/5
1+y+/5

�2

+2.5
� y+/5

1+y+/5
�

−B*, (15)

where B* is the effect of wall roughness and is equal to zero in the present study. The up is
the velocity component parallel to solid wall. The k and o values at the corresponding grid
points are then calculated as:

k=u*2/
Cm, o=lu*3/(0.41y), nt=Cmk2/o, (16)

where

l=
2

1+5/y+ +0.008(23.2−y+)(y+)/(1+y+/5)3.

4. RESULTS AND DISCUSSIONS

For the computation of flow field in the pipe with a ring-type constriction, non-uniform
grids were used in the axial z-direction with more grid points being distributed nearer the
constriction as shown in Figure 1(b). For the radial direction and the time domain, computa-
tional grids were evenly distributed. Grids with 21, 31, 41, 51 and 61 points in the r-direction
and 101, 151, 201, 251 and 301 points in the z-direction were tested for 21, 31, 41, 51 and 61
time intervals per pulsatile period (T) in the time domain for the first three time periods to
check on the grid point and time steps independency on the numerical results obtained.
Further computations are then based on a grid point arrangement of 51, 201, 41 in the r-, z-
and t-directions respectively. Computations were carried out for more than one periodical
time cycle for every pulsatile unsteady flow conditions considered.

As there are no available unsteady flow cases similar to the problems considered here in
the literature, the validity of the numerical procedure and grid size used were verified against
available data for steady flow in a sudden expansion pipe. Test results are compared with
data available from Polland [30] and Napolitano and Cinnella [31] for the recirculation
length and the wall shear stress. These are shown in Figure 2. The results indicate that the
present numerical procedure and grid size used produce accurate results when compared with
known steady flow data. As each step of the unsteady flow cases considered here can be
regarded as a quasi-steady state problem, it is thus assumed here that a similar procedure
and grid size used should also produce accurate results for the unsteady flow cases to be
considered here.

In this study, sinusoidal flow field with dimensionless amplitude A varying from 0.0 to 1.0
were computed. The effect of amplitude on the pulsatile turbulent flow field are numerically
studied for pulsatile flow in a pipe with ring-type constriction. The mean flow Reynolds
number is 104 and the Strouhal number is 0.04 with a corresponding Womersley number of
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Figure 2. Comparison of results on steady flow in pipe with sudden expansion.

50. The instantaneous bulk velocity is expressed as ū(t)=1+A sin(2pt/T). The solution
domain is r/D from 0.0 to 0.5, z/D from 0.0 to 20 with the constriction locating at z/D=5.0
and t/T from 0.0 to 1.5. The constriction opening ratio is 0.5 and thickness ratio is 0. 1.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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Figure 3. Sinusoidal flow development in pipe with a ring-type constriction: d/D=0.5, h/D=0.1, Re=104, St=0.04, A=0.75.
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4.1. Turbulent pulsatile flow in tube with a ring-type constriction

4.1.1. Flow de6elopment. The general flow development of pulsatile flow is illustrated here
for the case with Re=104, Nw=50 and St=0.0398, with A=0.75 for one pulsating cycle.
The pulsatile flow developments are presented in Figure 3. The forward flow has its maximum
instantaneous flow rate at t/T=1/4, and minimum flow rate at t/T=3/4. The recirculation
length (zr/D) varies within the range of 1.48–2.21. The shear stress contours contain a core-like
feature consistently downstream of the constriction in the whole pulsating cycle, as shown in
Figure 3(b). For t/T\4/4, the second cycle starts and the flow repeats the similar structure.
There is no constant recirculation region in the pulsatile flow. The reattached point moves
forward and backward with time.

4.1.2. Centreline 6elocity and turbulent kinetic energy. The centreline velocity is also an
important flow characteristics in the study of unsteady flow field development. Figure 4
presents the development of centreline velocity and turbulent kinematic energy with respect to
time (t) for the case of A=1.0. In general, it was observed that flow accelerates rapidly in a
small upstream region of the constriction but decelerates gradually to a fully developed state
downstream of the straight pipe flow. The centreline kinetic energy has two peaks. One is at
the position of constriction and the other is near the axial position of recirculation point.
Figure 4 shows that as t varies from 0 to 10, the flow accelerates to its maximum flow rate and
the centreline velocity has its maximum value of 10.8 at t=10. As the flow undergoes a

Figure 4. Development of centreline velocity and turbulent kinetic energy: d/D=0.5, h/D=0.1, Re=104, St=0.04,
Nw=50.1, A=1.0.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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Figure 5. Relation between flow rate and axial pressure gradient. (Arrows show increment with respect to time)

deceleration period from t=20 to 30, both the velocity and kinetic energy decrease. The
minimum velocity and kinetic energy appear at t=32. With the bulk velocity approaching
zero, the recirculation length also approaches zero. When t increases from 30 to 50, flow
accelerates to its peak flow rate again. For t=50–60, flow undergoes another acceleration and
deceleration cycle.

4.2. Parametric relations of turbulent pulsatile flows in pipe with a ring-type constriction

4.2.1. Relation between flow rate (Q) and pressure gradient (dp/dz). The relation between flow
rate (Q) and pressure gradient (dp/dz) along the axial direction in the fully developed region
is presented in Figure 5. The peak dp/dz value appears at the instant of zero flow rate (Q),
when the flow has its maximum acceleration or deceleration. Conversely, dp/dz=0 occurs at
the instant of maximum flow rate, when the flow acceleration is equal to zero. Hence,
characteristics of the pressure gradient (dp/dz) depends mainly on the flow acceleration or
deceleration. The dp/dz has the same absolute values for the same acceleration and decelera-
tion. For the sinusoidal flow, this relation can be expressed as:�dp/dz

Cpz1

�2

+
� Q

Cpz2

�2

=1, (17)

where Cpz1, and Cpz2 are constants depending on the magnitude of A.
Typical relations between the instantaneous flow rate (Q) and axial pressure gradient

(dp/dz) in a fully developed flow region at z/D=16 is shown on Figure 5. The phase angle,
fp−Q, between flow rate and axial pressure gradient is about 85°. All the instantaneous points
form nearly elliptic curves.

The time-average pressure gradient (dp/dz) is calculated by:

dp/dz=
1
T
& 1.5T

0.5T

(dp/dz) dt (18)

and the results are presented in Figure 6. With the increase of amplitude, (dp/dz) decreases.
The dimensional time-average pressure gradient is calculated by:

dp/dz*=dp/dz (Rem)2/(rD3). (19)

Hence, with an increase of pulsating amplitude, more energy is required in the transportation
of fluid in straight pipe.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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Figure 6. Effect of pulsating amplitude on time averaged axial pressure gradient.

Figure 7. Relation between flow rate and pressure loss across constriction.

4.2.2. Relations between flow rate and pressure loss. The results of pressure loss are presented
in Figure 7 for flows at different amplitude values. These data form a fitting curves of:

Ploss=16.4Q �Q �. (20)

Variations of time-average pressure loss (P( loss) with respect to pulsatile amplitude is shown
in Figure 8. The P( loss increases with the pulsatile amplitude. Through other studies, it is

Figure 8. Effect of pulsating amplitude on time average pressure loss.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)



T.S. LEE AND Z.D. SHI824

Figure 9. Relation between flow rate and maximum velocity.

generally noted that the difference between characteristics of (P( loss) with respect to pulsatile
amplitude are negligible for Strouhal number of 0.04 and another Strouhal number one order
greater.

4.2.3. Other parameters of the turbulent pulsatile flow. Simple relations are found between
flow rate and non-dimensional maximum values of flow velocity, vorticity, shear stress,
turbulent kinetic energy and wall vorticity, wall shear stress as approximated related by:

umax=7.50Q(t); Vmax=283.7Q(t); tmax= −0.733Q2(t); kmax=1.98Q2(t);

Vw,max=44.7Q(t); tw,max= −0.0257Q2(t). (21)

The above relationships are also presented in Figures 9–14.
In physiological flow, turbulent shear stress is directly related to the cause of damage of

blood cell. The numerical results of the instantaneous maximum values of the turbulent shear
stress (tmax) of the whole flow field, and the wall shear stress (tw,max) are presented in Figures
12 and 13 respectively. The relation between Q and tmax are complex. For the same Q value,
the tmax value is smaller during the acceleration than that during deceleration. This is similar
to the phenomena discussed in the turbulent viscosity development. The wall shear stress tw,max

Figure 10. Relation between flow rate and maximum vorticity.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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Figure 11. Relation between flow rate and maximum wall vorticity.

Figure 12. Relation between flow rate and maximum shear stress.

has a simple quadratic relationship with the flow rate. As shown in Figures 12 and 13, the
maximum wall vorticity and shear stress are about 1/6 and 1/3 of their overall values
respectively.

Figure 13. Relation between flow rate and maximum wall shear stress.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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Figure 14. Relation between flow rate and maximum turbulent kinetic energy.

At A=1.0, there is a short time period where the maximum turbulent kinetic energy is equal
to zero, as shown in Figure 14. The flow field at this time period is then laminar.

Development of the characteristics of turbulence in the pulsatile flow field with time can be
deduced from the relationship of the flow rate (Q) and the maximum turbulent viscosity
(nt,max) as shown in Figure 15. For the sinusoidal flow, the nt,max is consistently larger than
zero, except during the initial starting phase of the pulsatile flow period. The flow in general
has smaller nt,max value during the acceleration period when compared with the nt,max value
during the deceleration period. The flow is in general turbulent for sinusoidal flow, with a
minimum instantaneous nt,max value of the order 0.010.

4.3. Application of present results to biomedical and intracardiac flow phenomena

For cases corresponding to intracardiac flow and valvular regurgitation, the blood can be
considered as Newtonian fluid in the larger artery, where the shear rate is larger [16,18,32]. At
36–37°C, the blood density (r) is 1.055×103 kg m−3 and the kinematic viscosity, n, is 0.04
Poise or 3.79×10−6 m2 s−1. The peak velocity at mitral valve opening section is about
3.0–6.0 m s−1. The artery diameter is about 2.0×10−2–3.0×10−2 m and the corresponding
peak Reynolds number (Re) are in the order of 10−4. The normal physiological frequency is
about 72 beats min−1 or 1.2 Hz, which gives the corresponding Womersley number (D
v/n)

Figure 15. Relation between flow rate and maximum turbulent viscosity.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 813–830 (1999)
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of the order of 50.0. The above range of parameters were considered in the present study. Only
the general trends of the results are presented in this paper.

Development of non-invasive quantification method is of interest in valvular regurgitant
diagnosis applications [33]. Based on the free turbulent jet flow theory, Slordahl et al. [34]
developed a method to evaluate the regurgitant quantity as:

Q=CdAo[2Dp/r ]2, (22)

where Q is the regurgitant volume, Cd is the ‘discharge coefficient’, Ao is the valve opening area,
r is the density of blood, Dp is the pressure difference across the valve, and Cd is equal to 0.61.
However, the difficulty in obtaining Dp on human patients [35] prevents its practical applications.

Cape [36] developed a non-invasive method to evaluate the regurgitant volume as:

Q=
&

u2 dA/Uo=pUm
2 X2/(26.46Uo), (23)

where Um is the central-line velocity at axial location X, Uo is the maximum velocity at the valve.
This result is applicable in clinical diagnosis because the velocity information can be obtained
by using Doppler echocardiography technique.

Issaz [37] also developed a theoretical model for the non-invasive assessment of the transmitral
pressure–flow relation. According to the linear momentum equation applied to the atrioventric-
ular coupling, the left-atrium− left-ventricle pressure difference (pa−pv) can be written as:

pa−pv=A (6/(t+B62+C6, (24)

where 6 is the transmitral blood velocity and A, B and C are variables related to the geometry
of the atrium, ventricle and mitral orifice respectively, which can be obtained from Doppler
echocardiolography.

In the present study, with the opening ratio of 0.5, the relationships between the flow rate
and the maximum of velocity, turbulent shear stress, pressure loss can be obtained. These
relationships are given by

Q=0.1333Vmax; Ploss=16.4Q �Q �; tw,max= −0.0257Q �Q �. (25)

Hence, from the velocity information of Droppler echocardiolography, the regurgitant volume,
pressure difference, the maximum shear stress and wall shear stress can be predicted.

In the valvular regurgitant and intracardiac flow, the turbulent shear stress and pressure loss
across constrictions are of relevant to the endothelium, the damage of corpuscles and the
development of atheroma respectively. By using the numerical results of the pulsatile flows, the
shear stress and the pressure loss can be estimated. The dimensional maximum shear stress
reaches 596 N m−2 for both Nw=30 and 50. The dimensional maximum wall shear stress is
24.0 N m−2 for both Nw=30 and 50. The time period of shear stress greater that 40 N m−2,
where enthothelium will be deteriorated, is about 0.5T. The dimensional maximum pressure loss
across constriction is 1.27×104 N m−1 or 95.3 mmHg for both Nw=30 and 50. This value
is greater than 30 mmHg, where the atheroma appears.

Consider the two parameters of pressure loss and turbulent shear stress for the case of Re=104

and D=2.50×10−2 m. The dimensional pressure loss is given by:

Ploss=16.4Q �Q �. (26)

The value of the peak pressure loss is 2.674×104 N m−1 or 200.7 mmHg. This value is large
enough to cause the atheroma, which is developed at pressure drop greater than 30 mmHg. At
Q=0.5Qmax, the pressure drop is equal to 50.2 mmHg, which is also larger than the critical value.

The dimensional wall shear stress is given by
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tw,max= −0.0257Q �Q �. (27)

The peak wall shear stress value is equal to 47.81 N m−2, which is near to the critical value
of endothelium deterioration, of 40 N m−2. The peak dimensional turbulent shear stress is equal
to 1.115×103 N m−2. This value is much larger than the critical value of the incipient hemolysis
at 400 N m−2. At Q=0.5Qmax, the turbulent shear stress is equal to 418.1 N m−2 and also greater
than the critical value.

5. CONCLUSIONS

Pulsatile turbulent flows in pipe with a ring-type constriction have been computed for a Reynolds
number (Re) of the order of 104 and a Womersley number (Nw) of 50 with a corresponding
Strouhal number (St) of 0.04. The pulsating flows are sinusoidal in nature with different amplitude
(A). In general, numerical experimentations show that flow deceleration in the pulsatile cycles
tends to enlarge the recirculation region and its effect becomes more significant with the increase
of the pulsatile amplitudes (or the corresponding increase in Womersley and Strouhal numbers).
The corresponding flow acceleration in the pulsatile cycles tends to increase the pressure drop
in the pipe flow. The time-averaged pressure gradient along the axial direction decreases linearly
while the pressure loss increases parabolically when the pulsatile amplitude was increased from
0.0 to 1.0.

For the pulsatile flow considered here, the flow in the vicinity of the pipe with ring-type
constrictions is observed to be always turbulent after the pulsatile flow was initiated. The flow
disturbance is not diminished completely because the time period with small velocity in each
the cycle is very short. For the symmetrical sinusoidal pulsatile flows investigated, they exhibit
both laminar and turbulent flow characteristics in an alternative manner within the pulsatile flow
fields. The length of the laminar core in the pulsatile flow, as shown through the turbulent shear
stress contours, were observed to change in magnitude and domain with respect to time in a
systematic manner.

Various parametric flow relationships are obtained to describe the pulsatile flow characteristics.
Numerical linear relationships are obtained for the flow rate and the maximum values of velocity,
vorticity. Quadratic relationships are obtained for the flow rate and the pressure loss across the
constriction, and the maximum wall shear stress. An elliptic relationship is observed between
flow rate and pressure gradient. From the flow characteristics obtained, flow acceleration was
observed to suppress the development of flow disturbance in the pulsatile flows studied here.
All the instantaneous maximum values of turbulent kinetic energy, turbulent viscosity, turbulent
shear stress are smaller during the acceleration phase when compared with those during
deceleration period.
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APPENDIX A. NOMENCLATURE

pulsatile amplitudea
pulsatile amplitude, A=a/DA
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coefficients of turbulence modelCc, Cm, C1, C2

vascular pipe diameter, used as the characteristic length, LD
d orifice diameter

pressure gradient in axial directiondp/dz
time-averaged pressure gradient, 1/T 	t+T

t (dp/dz) dtdp/dz
fm coefficient of turbulence model

constriction thicknessh
obstacle height, ho= (D−d)/2ho

k dimensionless turbulence kinetic energy
Nw Womersley number, Nw=D
v/n

dimensionless pressurep
Ploss pressure loss across constriction

pressure difference between upstream and downstream flow
time-averaged pressure loss, 1/T 	t+

t Ploss dtP( loss

Q flow rate, Q=Q(t)= (p/4)Du
2−(t)

Qmax dimensionless maximum flow rate=1.0
Reynolds number, Re= ūpeakD/nRe

Rit Richardson number of streamline curvature
r radial co-ordinate, radial distance

Strouhal number, St=D/(ūpeakT)= (1/2p)(Nw2/Re)St
T time period of pulsatile flow cycle

time period of sinusoidal flow cycleTs

t time co-ordinate
dimensionless axial velocity componentu
instantaneous bulk velocity in pipeū(t)

ūpeak the peak ū(t) value (used as characteristics velocity)
radial velocity component6
axial co-ordinate, axial distancez

zr recirculation length

Greek letters

under relaxation factor in updating the pressuread

dimensionless dissipation rate of turbulent energyo

dimensionless vorticity, V=(u/(r−(6/(z8p−Q

n fluid molecular kinetic viscosity
effective viscosity, ne=1/Re+ntne

turbulent eddy viscositynt

r fluid density
t dimensionless shear stress, t=ne((u/(r+(6/(z)

co-ordinate variables in general curvature co-ordinatej, h

V phase angle between flow rate and pressure gradient variation in pulsatile
flow
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